Below is the description of a problem called 'Snapper Chain', from the 'Google Code Jam - 2010':

Problem

-------

The Snapper is a clever little device that, on one side, plugs its input plug into an output socket, and, on the other side, exposes an output socket for plugging in a light or other device.

When a Snapper is in the ON state and is receiving power from its input plug, then the device connected to its output socket is receiving power as well. When you snap your fingers -- making a clicking sound -- any Snapper receiving power at the time of the snap toggles between the ON and OFF states.

In hopes of destroying the universe by means of a singularity, I have purchased N Snapper devices and chained them together by plugging the first one into a power socket, the second one into the first one, and so on. The light is plugged into the Nth Snapper.

Initially, all the Snappers are in the OFF state, so only the first one is receiving power from the socket, and the light is off. I snap my fingers once, which toggles the first Snapper into the ON state and gives power to the second one. I snap my fingers again, which toggles both Snappers and then promptly cuts power off from the second one, leaving it in the ON state, but with no power. I snap my fingers the third time, which toggles the first Snapper again and gives power to the second one. Now both Snappers are in the ON state, and if my light is plugged into the second Snapper it will be on.

I keep doing this for hours. Will the light be on or off after I have snapped my fingers K times? The light is on if and only if it's receiving power from the Snapper it's plugged into.

Input

-----

The first line of the input gives the number of test cases, T. T lines follow. Each one contains two integers, N and K.

Output

------

For each test case, output one line containing "Case #x: y", where x is the case number (starting from 1) and y is either "ON" or "OFF", indicating the state of the light bulb.

Limits

------

1 ≤ T ≤ 10,000.

Small dataset

-------------

1 ≤ N ≤ 10;

0 ≤ K ≤ 100;

Large dataset

-------------

1 ≤ N ≤ 30;

0 ≤ K ≤ 108;

Sample Input

------------

4

1 0

1 1

4 0

4 47

Sample Output

-------------

Case #1: OFF

Case #2: ON

Case #3: OFF

Case #4: ON

The description of the problem might be a bit confusing, but if you spend some time and clearly understand about what it really wants, then its really easy to code the solution for that. In my case, I wrote it down on paper and looked at the pattern of the snappers, for different values of n (number of snapper devices)....After looking at the different patterns, it was easy for me to figure out that the number of minimum snaps required to power the end device is equal to "(2 power n) - 1". Ok, this is just the minimum number of snaps! After the minimum number of snaps, it takes 1 snap to totally power off all the snappers...and it again takes "minimum number of snaps', to power the end device. So, after the 'minimum number of snaps', it takes (2 power n) to power the end device. Below is the solution, that I coded in Java:

The solution for this problem can be coded in different ways...In the 'Content Analysis' section of Code Jam site, there is another interesting solution of using XOR operation of bits.

- GCJ 2014 - 'Deceitful War'
- GCJ 2014 - 'Cookie Clicker Alpha' Problem
- GCJ 2014 - Magic Trick
- GCJ 2013 - Fair And Square
- GCJ 2013 - Tic-Tac-Toe-Tomek
- GCJ 2012 - Recycled Numbers
- GCJ 2012 - Dancing With Googlers
- GCJ 2012 - Speaking In Tongues
- GCJ 2011 - Magicka
- GCJ 2011 - Bot Trust
- GCJ 2010 - Fair Warning
- GCJ 2010 - Snapper Chain
- Odd Man Out - GCJ 2010 (Africa)
- Store Credit - GCJ 2010 (Africa)
- T9Spelling - GCJ 2010 (Africa)
- Reverse Words - GCJ 2010 (Africa)
- All Your Base - GCJ 2009
- Alien Language - GCJ 2009
- Google Code Jam 2008 - Minimum Scalar Product
- GCJ 2008 - Alien Numbers
- Playing With Googol
- Google Billboard Puzzle
- Euler's Number (e) to 10000 digits
- Spiral Walking

- GCJ 2014 - 'Deceitful War'
- GCJ 2014 - 'Cookie Clicker Alpha' Problem
- GCJ 2014 - Magic Trick
- GCJ 2013 - Fair And Square
- GCJ 2013 - Tic-Tac-Toe-Tomek
- GCJ 2012 - Recycled Numbers
- GCJ 2012 - Dancing With Googlers
- GCJ 2012 - Speaking In Tongues
- GCJ 2011 - Magicka
- GCJ 2011 - Bot Trust
- GCJ 2010 - Fair Warning
- GCJ 2010 - Snapper Chain
- Odd Man Out - GCJ 2010 (Africa)
- Store Credit - GCJ 2010 (Africa)
- T9Spelling - GCJ 2010 (Africa)
- Reverse Words - GCJ 2010 (Africa)
- All Your Base - GCJ 2009
- Alien Language - GCJ 2009
- Google Code Jam 2008 - Minimum Scalar Product
- GCJ 2008 - Alien Numbers
- Playing With Googol
- Google Billboard Puzzle
- Euler's Number (e) to 10000 digits
- Spiral Walking

- Recursion Depth - Java
- RESTFul Web Service - Seam Component Injection
- Micro-benchmarking Java Code With Caliper
- JSF & Highcharts (Javascript Chart Library)
- Add 'Syntactic Sugar' With 'Fluent Interface'
- Priority Queue in Java
- Compile Java Files At Runtime
- Missing Number
- Guice - AOP (Aspect Oriented Programming)
- Creating Executable Jar File With Maven Shade Plugin
- Java - Looping Through A Range of BigInteger Values
- Create Your Own Dependency Injection Framework
- Google Guice - Example
- Guice Grapher - Example
- Using Richfaces 'Suggestion Box' As Combo Box
- Hashcode Of A String In Java
- Richfaces - Modal Panel As A Wizard
- Jasper Reports - Thermometer Report
- Jasper Reports - Gantt Chart
- Jasper Reports - Example
- Seam - Load i18n Messages From Database
- Autoboxing In Java & Bug Patterns
- Dont Smack The Stack (Deal With Stack Overflow Exceptions)

The views expressed on this blog are my personal views and do not reflect the views of
my employer or campaigns I am supporting.

All sample code is provided for illustrative purposes only. These examples have not been thoroughly tested under all conditions. The writer therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The implied warranties of non-infringement, merchantability and fitness for a particular purpose are expressly disclaimed.

All sample code is provided for illustrative purposes only. These examples have not been thoroughly tested under all conditions. The writer therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The implied warranties of non-infringement, merchantability and fitness for a particular purpose are expressly disclaimed.